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IONIZED GAS BOUNDARY LAYER ON THE POROSITY WALL OF THE 
BODY WHOSE ELECTROCONDUCTIVITY IS A FUNCTION OF THE 

LONGITUDINAL VELOCITY GRADIENT 
 

S. Savić, B. Obrović, M.Despotović 
 
Abstract: Planar flow of the ionized gas in the boundary layer in the conditions of the so-called equilibrium ionization 
is studied. The contour of the body within the fluid is porous. The ionized gas is under the influence of the outer 
magnetic field which is normal to the contour of the body. The electroconductivity of the ionized gas is assumed to be a 
function of the longitudinal velocity gradient. In the paper, the governing equation system is with suitable 
transformations brought to a generalized form and numerically solved in the four-parametric approximation. Based on 
the obtained numerical solutions diagrams of important physical values and characteristics of the boundary layer are 
drawn. Adequate conclusions are also made. 
     
Key words: boundary layer, ionized gas, ionized gas electroconductivity, porous contour, general similarity method, 
porosity parameter.   
  
1. INTRODUCTION 
 

This paper presents a detailed study of a complex 
ionized gas flow in the boundary layer along a porous 
contour. As known, at supersonic flow velocities the gas 
dissociation is followed by ionization.  Hence, the gas 
becomes electroconductive. When the ionized gas is 
exposed to a magnetic field, an electric flow is formed in 
the gas.  Due to this flow, the so-called Lorentz force 
and Joule heat generate.  As a result, additional terms, 
which contain the gas electroconductivity, appear in the 
governing equations.  
The most significant results in investigation of the 
dissociated gas flow are given in the book by Dorrance 
[1]. Loitsianskii and the members of his school [2, 3, 4, 
5] performed a detailed investigation of the dissociated 
gas flow in the boundary layer. Investigators of the so-
called Belgrade School of the Boundary Layer led by 
Saljnikov [6, 7, 8] accomplished significant results in 
the field of dissociated gas flow in the boundary layer.  
In the works of Boricic et al [9, 10, 11] and Ivanovic 
[12], MHD boundary layer on a porous and nonporous 
contour of a body within the fluid is studied. In the 
paper [2], the ionized gas flow in the boundary layer 
along a flat plate in the presence of a magnetic field is 
studied. The paper [13] studies the ionized gas flow in 
the boundary layer along a nonporous body and papers 
[14, 15] study the ionized gas flow along a porous body 
of an arbitrary shape. In these papers, different 
electroconductivity variation laws are used.   
The presented paper gives the results of investigation of 
the ionized gas flow in the boundary layer along a 
porous wall in the case when the electroconductivity is a 
function of the longitudinal velocity gradient. The 
ionized gas of the same physical characteristics as in the 

main flow is injected, i.e. ejected with the 
velocity )(xvw . The outer magnetic field is normal to the 
wall of the body within the fluid. According to [2], it is 
considered that the power of this field is )(xBB mm =  
and that the magnetic Reynold's number is very small. 
Therefore, in the case of the ionized gas flow in the 
magnetic field, the governing equation system of steady 
planar laminar boundary layer with the corresponding 
boundary conditions, according to [2], takes the 
following form:   
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By analogy with MHD boundary layer [9], the ionized 
gas electroconductivity σ  is assumed to be a function of 
the longitudinal velocity gradient 
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If the pressure is eliminated from the system (1), based 
on the conditions for the outer edge of the boundary 
layer, the following equation system is obtained:  
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The boundary conditions remain unchanged.  
  
2. TRANSFORMATION OF THE 
EQUATIONS 
 
Modern methods of solution of boundary layer equations 
involve usage of a momentum equation. In the case of 
the ionized gas flow in the boundary layer along a 
porous wall, this equation will have the simplest form if 
instead of physical coordinates x  and y  we introduce 
new variables [3] in the form: 
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and a stream function ),( zsψ  by means of the relations:  
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Quantities 0ρ  and 0μ  denote the known values of the 
density and the dynamic viscosity of the ionized gas 
(air) at a concrete point. 
Using transformations (4) and (5) the governing 
equation system, together with the boundary conditions, 
is transformed and brought to the following form: 
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In the transformed equations (7), the nondimensional 
function Q  and Prandtl number Pr  are determined with 
the expressions: 

                      ,
ww

Q
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λ

μ
= pc

                  (7) 

where λ  is the thermal conductivity coefficient pc  - the 
specific heat of the ionized gas at a constant pressure. 
In order to solve the equation system (4), it is necessary 
to derive the momentum equation of the ionized gas on a 
body with a porous contour  
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While deriving the momentum equation, the usual 
quantities are introduced: a parameter of the form ),(sf  
magnetic parameter ),(sg  a conditional displacement 

thickness ∗Δ , a conditional momentum loss thickness 
∗∗Δ , a shear stress at the wall of the body within the 

fluid wτ , a nondimensional friction function )(sζ , a 
nondimensional value H  and a characteristic boundary 
layer function on the porous wall mpF . With the ionized 
gas flow, these quantities are defined with the relations: 
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Due to the porous wall of the body within the fluid, an 
addend appears in the momentum equation. Therefore, it 
is necessary to introduce a new parameter, the so-called 
porosity parameter )(sΛ : 
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In order to apply the general similarity method, it is very 
important that the boundary conditions and the stream 
function on the wall of the body within the fluid remain 
the same as with the nonporous wall. For that reason, a 
new stream function ),( zs∗ψ  is introduced with the 
relation 
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      ,),()(),( zsszs w
∗ψ+ψ=ψ      0)0,( =ψ∗ s           (11) 

where )()0,( ss wψ=ψ  denotes the stream function of 
the flow along the wall of the body within the fluid. 
Applying the relation (11), the system (6) is transformed 
into the following equation system: 
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3. MATHEMATICAL MODEL 
 
In order to derive the generalized boundary layer 
equations it is necessary to introduce new 
transformations from the very beginning: 
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where ),( zsη  is the newly introduced transversal 
variable, Φ -  the newly introduced stream function and 
h - the nondimensional enthalpy. Some important 
quantities and characteristics of the boundary layer (10) 
can be written in the form of more suitable relations:   
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In the general similarity transformations (13), with the 
nondimensional functions Φ and h , we introduced a 
local parameter of the ionized gas compressibility 

0f=κ , a set of parameters of the form kf  of 
Loitsianskii's type [3], a set of magnetic parameters kg  

and a set of porosity parameters kΛ  [16] by means of 
the following expressions:        
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They present new independent variables that are used 
instead of the longitudinal variable s . 
The local compressibility parameter 0f=κ  and the sets 
of parameters satisfy the corresponding simple recurrent 
differential equations of the form: 
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Applying the similarity transformations (13) and (15) to 
the equation system (12), we obtain the following 
boundary layer equation system: 

  

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂η
Φ∂

∂
Φ∂

−
∂∂η
Φ∂

∂η
Φ∂

γ+

⎢
⎢
⎣

⎡
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂η
Φ∂

∂
Φ∂

−
∂∂η
Φ∂

∂η
Φ∂

θ=

=
∂η
Φ∂Λ

+
∂η
Φ∂

∂η
Φ∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
Φ∂

−
ρ
ρ

+

+
∂η
Φ∂

Φ
−+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂η
Φ∂

∂η
∂

∑

∑
∞

=

∞

=

2

22

1

2

22

0
2

2

2
1

2

2

2
1

2

2
1

2

2

2
1

2

2

2

1

2
)2(

kkk
k

kkk
k

e

gg

ffB

BB
g

B
f

B
fbaBQ

      (17) 

 
 
A.63



 

 

,2

22

1 ⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂η

Φ∂
Λ∂
Φ∂

−
Λ∂∂η
Φ∂

∂η
Φ∂

χ+∑
∞

= kkk
k  

=
∂η
∂Λ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
Φ∂

∂η
Φ∂κ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂η
Φ∂

κ+

+
∂η
Φ∂

ρ
ρκ

−
∂η
∂

Φ
−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
∂

∂η
∂

h
BB

gQ

B
fh

B
fbaBhQ e

1
2

2

2
1

2

2

2

2
1

2
1

2

22

2
2

)2(
Pr

  

.

1

1

1

0
2

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
∂

Λ∂
Φ∂

−
Λ∂
∂

∂η
Φ∂

χ+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
∂

∂
Φ∂

−
∂
∂

∂η
Φ∂

γ+

⎢
⎢
⎣

⎡
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂η
∂

∂
Φ∂

−
∂
∂

∂η
Φ∂

θ=

∑

∑

∑

∞

=

∞

=

∞

=

hh

h
gg

h

h
ff

h
B

kkk
k

kkk
k

kkk
k

 

The transformed boundary conditions are: 
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The generalized equation system (17) represents a 
general mathematical model of the ionized gas flow 
along a porous wall of the body within the fluid for the 
assumed form of the electroconductivity variation law. 
 
 
4. NUMERICAL SOLUTION 
 
When the generalized equation system (17) with the 
boundary conditions (18) is numerically solved, a finite 
number of parameters should be adopted so that the 
solution is obtained in n - parametric approximation. 
The equation system can be solved only with a relatively 
small number of parameters. If we assume that all the 
similarity parameters from the second one onward equal 
zero: 
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the obtained equation system is significantly simplified. 
Furthermore, when the general similarity method is 
applied, the so-called localization is also performed. If 
we neglect derivatives per the compressibility, magnetic 
and porosity parameters, the equation system (17) is 
significantly simplified, and in a four-parametric three 
times localized approximation it has the following form: 
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The boundary conditions (18) remain unchanged. 
In the equations of the system (20) the subscript 1 in 
some (first) parameters is left out. 
For the numerical integration of the obtained system of 
differential partial equations of the third order, it is 
necessary to decrease the order of the differential 
equations. Using [7]  
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we decrease the order of the differential equations of the 
system (20), so the system together with the boundary 
conditions comes to: 
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For the nondimensional function Q  [15] and the density 
ratio ρρe  [4] that appear in the system (22), the 
following approximate formulae are used: 
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A concrete numerical solution of the obtained system of 
nonlinear and conjugated differential partial equations 
(22) is performed using finite differences method, i.e., 
″passage method″. Based on the scheme of the plane 
integration grid [7], derivatives of the functions Φϕ ,  

and h  are substituted by finite differences ratios, and 
the equation system (22) is brought to the following 
system of algebraic equations:  
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The equation system (24) consists of two subsystems - 
dynamic (I) and thermodynamic (II). 
For the concrete numerical solution of the equation 
system (22), i.e., the corresponding algebraic system, a 
program in FORTRAN program language has been 
written. It is based on the program used in the 
investigations [7]. Since Prandtl number depends little 
on the temperature, for air, it is assumed to be: 

712.0Pr = .  The constants  a  and b , according to [7], 
have optimal values: .7140.5;4408.0 == ba  
As the equation system (22) is localized per the 
compressibility, porosity and magnetic parameters, these 
parameters have become simple parameters. Therefore, 
the equation system (22) is solved by the usual 
procedure starting from the value 00.0=f   (flat plate), 
for values of the parameters g,κ  and Λ  given in 
advance. 
 
5. CONCLUSION 
 
Only some of the results are presented in this paper in 
the form of diagrams based on which important 
conclusions are drawn:    
• Regardless of the fact whether the ionized gas is 

injected into the main flow or ejected from it, at 
different cross-sections of the boundary layer, the 
nondimensional velocity euu  very quickly converges 
towards unity (Fig. 1).  

• The magnetic field has a great influence upon the 
boundary layer characteristic mpF  (Fig. 2). 

• The influence of the magnetic field on the 
nondimensional friction function ζ , and therefore on 
the boundary layer separation point, is especially 
pointed out (Fig. 3). By increasing the values of the 
magnetic parameter, the separation of the boundary 
layer is postponed.  

• The porosity parameter Λ has a great influence on the 
nondimensional friction function ζ (Fig. 4). 
Consequently, this parameter has also a significant 
influence on the boundary layer separation point.  It is 
noted that the injection of air, in accordance with the 
relation (10), postpones the separation of the ionized 
gas boundary layer because the separation point 
moves down the flow. 

 

 
Fig. 1. Diagram of the nondimensional velocity euu  
 

 
Fig. 2. Distribution of the characteristic function Fmp 

 

 
Fig. 3. Distribution of the nondimensional friction 
function )(gζ  
 

 
Fig. 4. Distribution of the nondimensional friction 
function )(Λζ   
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